Exogenous growth factors induce the production of ganglion cells at the retinal margin.
نویسندگان
چکیده
Neural progenitors at the retinal margin of the post-hatch chicken normally produce amacrine and bipolar cells, but not photoreceptor or ganglion cells. The purpose of this study was to test whether exogenous growth factors influence the types of cells produced by progenitors at the retinal margin. We injected insulin, FGF2 or a combination of insulin and FGF2 into the vitreous chamber of post-hatch chickens. To assay for growth factor-induced changes at the retinal margin, we used in situ hybridization and immunocytochemistry on cryosections. One day after the final injection, we found that insulin alone stimulated the addition of cells to the retinal margin, but this was not further increased when FGF2 was applied with insulin. Insulin alone increased the number of cells in the progenitor zone that expressed neurofilament, and this was further increased when FGF2 was applied with insulin. These neurofilament-expressing cells in the progenitor zone included differentiating neurons that expressed Islet1 or Hu. Four days after the final dose of growth factor, we found that the production of ganglion cells was induced by co-injection of insulin and FGF2, but not by either insulin or FGF2 alone. We conclude that the types of cells produced by progenitors at the retinal margin can be altered by exogenous growth factors and that normally the microenvironment imposes limitations on the types of neurons produced.
منابع مشابه
Stem Cells in Glaucoma Management
Glaucoma is the leading cause of preventable blindness worldwide. Despite tremendous advances in medical and surgical management of glaucoma in the recent years, the prevalence of glaucoma related blindness is anticipated to increase in the future decades because of the aging population. Stem cells have the potential to change the glaucoma management in several ways. There are several areas of ...
متن کاملChloride channel protein 2 prevents glutamate-induced apoptosis in retinal ganglion cells
Objective(s): The purpose of this study was to investigate the role of chloride channel protein 2 (ClC-2) in glutamate-induced apoptosis in the retinal ganglion cell line (RGC-5). Materials and Methods: RGC-5 cells were treated with 1 mM glutamate for 24 hr. The expression of ClC-2, Bax, and Bcl-2 was detected by western blot analysis. Cell survival and apoptosis were measured by 3-(4,5-dimeth...
متن کاملMesenchymal Stem Cells: Signaling Pathways in Transdifferentiation Into Retinal Progenitor Cells
Several signaling pathways and transcription factors control the cell fate in its in vitro development and differentiation. The orchestrated use of these factors results in cell specification. In coculture methods, many of these factors secrete from host cells but control the process. Today, transcription factors required for retinal progenitor cells are well known, but the generation of these ...
متن کاملExogenous growth factors stimulate the regeneration of ganglion cells in the chicken retina.
Recent reports have found that the posthatch chicken retina has the capacity for neuronal regeneration. The purpose of this study was to test whether the types of cells destroyed by neurotoxic lesions influence the types of cells that are regenerated, and whether exogenous growth factors stimulate neural regeneration in the chicken retina. N-methyl-D-aspartate (NMDA) was used to destroy amacrin...
متن کاملRegulation of retinal ganglion cell production by Sonic hedgehog.
Previous work has shown that production of retinal ganglion cells is in part regulated by inhibitory factors secreted by ganglion cell themselves; however, the identities of these molecules are not known. Recent studies have demonstrated that the signaling molecule Sonic hedgehog (Shh) secreted by differentiated retinal ganglion cells is required to promote the progression of ganglion cell diff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 129 9 شماره
صفحات -
تاریخ انتشار 2002